Getting started with an IVT-S and Arduino Uno CAN bus shield: Difference between revisions

From openinverter.org wiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
 
(11 intermediate revisions by 2 users not shown)
Line 3: Line 3:
Once the data is coming in over CAN, we can write a simple program to read the current value from the IVT-S.
Once the data is coming in over CAN, we can write a simple program to read the current value from the IVT-S.


There could be a lot of messaged coming back on the CAN bus, so we have to specify a "mask" and "filter" for the CAN message IDs we are interested in. CAN bus message IDs are 11 bytes long, so we will specify a mask of 0x7ff (which is 11111111111 in binary). The message ID of the "Current" reading from an IVT-S is 0x52, so we will specify that as the filter.  Using an MCP2515-based shield, we can set up to six different filter IDs.
There could be a lot of messages coming back on the CAN bus, so we specify a "mask" and "filter" for the CAN message IDs we are interested in. CAN bus message IDs are 11 bytes long, so we will specify a mask of 0x7ff (which is 11111111111 in binary). Using an MCP2515-based shield, we can set up to six different filter IDs. According to the [https://www.isabellenhuetteusa.com/wp-content/uploads/2022/07/Datasheet-IVT-S-V1.03.pdf Isabellenhütte IVT-S data sheet], the message ID of the "Current" reading from an IVT-S is 0x521, so we will specify that as the filter.   
[[File:Testing current measurement with IVT-S .jpg|alt=Testing current measurement with IVT-S |thumb|Testing current measurement with IVT-S ]]
[[File:Testing current measurement with IVT-S .jpg|alt=Testing current measurement with IVT-S |thumb|Testing current measurement with IVT-S ]]
Once those parameters are set, the data should come streaming in over CAN bus. The code below sets an interrupt handler so that we only output data when a matching data packet arrives.
Once those parameters are set, the data should come in over CAN bus every 20ms at 1Mb/s.
[[File:Serial console output of measured current values on CAN bus.png|alt=Serial console output of measured current values on CAN bus|thumb|Serial console output of measured current values on CAN bus]]
[[File:Serial console output of measured current values on CAN bus.png|alt=Serial console output of measured current values on CAN bus|thumb|Serial console output of measured current values on CAN bus]]
The tricky part is that the current measurement comes from the the IVT-S as a buffer of four byte values in big endian order. We have to re-assemble these bytes to get the numerical current value (in mA). Once that's done, we get nice, readable numerical values on the serial console.
The tricky part is that the current measurement comes from the the IVT-S as a buffer of four byte values in big endian order. We have to re-assemble these bytes to get the numerical current value (in mA). Once that's done, we get nice, readable numerical values on the serial console.
Line 11: Line 11:
Here's the code:
Here's the code:


  <nowiki>// IVT-S meter using CAN-BUS Shield
  // IVT-S meter using CAN bus shield
// electric_dart 2020
// electric_dart 2020
 
#include <SPI.h>
<nowiki>#</nowiki>include <SPI.h>
#include "mcp_can.h"
<nowiki>#</nowiki>include "mcp_can.h"
 
/*SAMD core*/
// the cs pin of the version after v1.1 is default to D9
#ifdef ARDUINO_SAMD_VARIANT_COMPLIANCE
// v0.9b and v1.0 is default D10
    #define SERIAL SerialUSB
const int SPI_CS_PIN = 10;
#else
    #define SERIAL Serial
MCP_CAN CAN(SPI_CS_PIN);                                    // Set CS pin
#endif
 
unsigned char len = 0;
// the cs pin of the version after v1.1 is default to D9
unsigned char buf[8];
// v0.9b and v1.0 is default D10
const int SPI_CS_PIN = 10;
void setup() {
const int CAN_INT_PIN = 2;
<nowiki> </nowiki>  // Set your Serial Monitor to 115200 baud
 
<nowiki> </nowiki>  Serial.begin(115200);
MCP_CAN CAN(SPI_CS_PIN);                                    // Set CS pin
 
<nowiki> </nowiki>  // Initialise the CAN bus
unsigned char flagRecv = 0;
<nowiki> </nowiki>  while (CAN_OK != CAN.begin(CAN_1000KBPS)) {            // init can bus
unsigned char len = 0;
<nowiki> </nowiki>      Serial.println("Failed to initialise CAN bus. Retrying...");
unsigned char buf[8];
<nowiki> </nowiki>      delay(100);
char str[20];
<nowiki> </nowiki>  }
 
<nowiki> </nowiki>  Serial.println("CAN bus initialised.");
void setup() {
    SERIAL.begin(115200);
<nowiki> </nowiki>  /*
    while (!SERIAL) {
<nowiki> </nowiki>      set receive mask
        ; // wait for serial port to connect. Needed for native USB port only
<nowiki> </nowiki>  */
    }
<nowiki> </nowiki>  CAN.init_Mask(0, 0, 0x7ff);                        // there are 2 masks in mcp2515, you need to set both of them
    while (CAN_OK != CAN.begin(CAN_1000KBPS)) {            // init can bus
<nowiki> </nowiki>  CAN.init_Mask(1, 0, 0x7ff);                        // 0x7ff is '11111111111' in binary, so we are checking 11 of the CAN message ID bits   
        SERIAL.println("CAN BUS Shield init fail");
        SERIAL.println("Init CAN BUS Shield again");
<nowiki> </nowiki>  /*
        delay(100);
<nowiki> </nowiki>      set receive filter
    }
<nowiki> </nowiki>  */
    SERIAL.println("CAN BUS Shield init ok!");
<nowiki> </nowiki>  CAN.init_Filt(0, 0, 0x521);                          // there are 6 filters in mcp2515
 
<nowiki> </nowiki>  CAN.init_Filt(1, 0, 0x521);                          // 0x521 is the CAN message ID for IVT-S Current value
    attachInterrupt(digitalPinToInterrupt(CAN_INT_PIN), MCP2515_ISR, FALLING); // start interrupt
<nowiki> </nowiki>  CAN.init_Filt(2, 0, 0x521);                           
 
<nowiki> </nowiki>  CAN.init_Filt(3, 0, 0x521);                           
    /*
<nowiki> </nowiki>  CAN.init_Filt(4, 0, 0x521);                           
        set receive mask
<nowiki> </nowiki>  CAN.init_Filt(5, 0, 0x521);                           
    */
    CAN.init_Mask(0, 0, 0x7ff);                        // there are 2 masks in mcp2515, you need to set both of them
}
    CAN.init_Mask(1, 0, 0x7ff);                        // 0x7ff is '11111111111' in binary, so we are checking 11 of the CAN message ID bits   
 
void loop() {
 
<nowiki> </nowiki>  if (CAN_MSGAVAIL == CAN.checkReceive()) {        // check if data coming
    /*
<nowiki> </nowiki>      CAN.readMsgBuf(&len, buf);    // read data,  len: data length, buf: data buf
        set receive filter
<nowiki> </nowiki>      unsigned long canId = CAN.getCanId();
    */
    CAN.init_Filt(0, 0, 0x521);                          // there are 6 filters in mcp2515
<nowiki> </nowiki>      if (canId == 0x521) {
    CAN.init_Filt(1, 0, 0x521);                          // 0x521 is the CAN mssage ID for IVT-S Current value
<nowiki> </nowiki>        Serial.print("Data received from IVT_Msg_Result_I");
    CAN.init_Filt(2, 0, 0x521);                           
<nowiki> </nowiki>        Serial.print("\t");
    CAN.init_Filt(3, 0, 0x521);                           
<nowiki> </nowiki>       
    CAN.init_Filt(4, 0, 0x521);                           
<nowiki> </nowiki>        // Convert individual big endian byte values to actual reading  
    CAN.init_Filt(5, 0, 0x521);                           
<nowiki> </nowiki>        long reading = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | (buf[5]);
 
<nowiki> </nowiki>        Serial.println(reading);
}
<nowiki> </nowiki>      }
 
<nowiki> </nowiki>  }
void MCP2515_ISR() {
<nowiki> </nowiki>  // Refresh every 250ms
    flagRecv = 1;
<nowiki> </nowiki>  delay(250);
}
}
 
[[Category:ISA Shunt]] [[Category:Arduino]] [[Category:Tutorial]] [[Category:Isabellenhuette]]
void loop() {
    if (flagRecv) {
         // check if get data
 
        flagRecv = 0;                  // clear flag
 
        // iterate over all pending messages
        // If either the bus is saturated or the MCU is busy,
        // both RX buffers may be in use and reading a single
        // message does not clear the IRQ conditon.
        while (CAN_MSGAVAIL == CAN.checkReceive()) {
            // read data,  len: data length, buf: data buf
            CAN.readMsgBuf(&len, buf);
            unsigned long canId = CAN.getCanId();
 
            if (canId == 0x521) {
              SERIAL.print("Data received from IVT_Msg_Result_I");
              SERIAL.print("\t");
              // Convert individual big endian byte values to actual reading  
              long reading = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | (buf[5]);
              SERIAL.print(reading);
            }
 
            SERIAL.println();
        }
    }
}</nowiki>

Latest revision as of 10:43, 14 June 2023

First of all, set up your Arduino Uno and CAN bus shield.

Once the data is coming in over CAN, we can write a simple program to read the current value from the IVT-S.

There could be a lot of messages coming back on the CAN bus, so we specify a "mask" and "filter" for the CAN message IDs we are interested in. CAN bus message IDs are 11 bytes long, so we will specify a mask of 0x7ff (which is 11111111111 in binary). Using an MCP2515-based shield, we can set up to six different filter IDs. According to the Isabellenhütte IVT-S data sheet, the message ID of the "Current" reading from an IVT-S is 0x521, so we will specify that as the filter.

Testing current measurement with IVT-S
Testing current measurement with IVT-S

Once those parameters are set, the data should come in over CAN bus every 20ms at 1Mb/s.

Serial console output of measured current values on CAN bus
Serial console output of measured current values on CAN bus

The tricky part is that the current measurement comes from the the IVT-S as a buffer of four byte values in big endian order. We have to re-assemble these bytes to get the numerical current value (in mA). Once that's done, we get nice, readable numerical values on the serial console.

Here's the code:

// IVT-S meter using CAN bus shield
// electric_dart 2020

#include <SPI.h>
#include "mcp_can.h"

// the cs pin of the version after v1.1 is default to D9
// v0.9b and v1.0 is default D10
const int SPI_CS_PIN = 10;

MCP_CAN CAN(SPI_CS_PIN);                                    // Set CS pin

unsigned char len = 0;
unsigned char buf[8];

void setup() {
    // Set your Serial Monitor to 115200 baud
    Serial.begin(115200);

    // Initialise the CAN bus
    while (CAN_OK != CAN.begin(CAN_1000KBPS)) {            // init can bus
        Serial.println("Failed to initialise CAN bus. Retrying...");
        delay(100);
    }
    Serial.println("CAN bus initialised.");

    /*
        set receive mask
    */
    CAN.init_Mask(0, 0, 0x7ff);                         // there are 2 masks in mcp2515, you need to set both of them
    CAN.init_Mask(1, 0, 0x7ff);                         // 0x7ff is '11111111111' in binary, so we are checking 11 of the CAN message ID bits  

    /*
        set receive filter
    */
    CAN.init_Filt(0, 0, 0x521);                          // there are 6 filters in mcp2515
    CAN.init_Filt(1, 0, 0x521);                          // 0x521 is the CAN message ID for IVT-S Current value
    CAN.init_Filt(2, 0, 0x521);                          
    CAN.init_Filt(3, 0, 0x521);                          
    CAN.init_Filt(4, 0, 0x521);                          
    CAN.init_Filt(5, 0, 0x521);                          

}

void loop() {
    if (CAN_MSGAVAIL == CAN.checkReceive()) {         // check if data coming
        CAN.readMsgBuf(&len, buf);    // read data,  len: data length, buf: data buf
        unsigned long canId = CAN.getCanId();

        if (canId == 0x521) {
          Serial.print("Data received from IVT_Msg_Result_I");
          Serial.print("\t");
          
          // Convert individual big endian byte values to actual reading 
          long reading = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | (buf[5]);
          Serial.println(reading);
        }
    }
    // Refresh every 250ms
    delay(250);
}