
ISA Current Sensor User Manual Version 1.00 January, 2016

1
copyright 2015 EVTV LLC

	

ISAscale	
High	Current	Sensor	Module	

For	
Electric	Vehicles	

 	

ISA Current Sensor User Manual Version 1.00 January, 2016

2
copyright 2015 EVTV LLC

INTRODUCTION	
This User Manual describes use and operation of the ISAscale IVT-Modular
high current sensor module for Electric Vehicles.

The IVT Module provides high accuracy temperature compensated shunt
measurement of electrical current at levels up to 2500 amps on some models.
EVTV makes available a model for 300A as well as a 1000 amp module.

Beyond current, the IVT Module measures up to three voltages of up to 800v
between the battery pack negative terminal and the measurement point.

These measurements are galvanically isolated from the 12v power used and
the Controller Area Network CAN communications bus where it reports
these measured values.

ISA Current Sensor User Manual Version 1.00 January, 2016

3
copyright 2015 EVTV LLC

As such, it performs as a very accurate mini Battery Monitoring System,
reporting three pack-segment voltages and overall current with high
accuracy over the CAN communications network.

To provide easy access to the basic functions of the IVT Module, EVTV also
developed the ISA library for the Arduino Due. This library makes it easy
to incorporate the functions of the IVT module in C++ programs written for
an Arduino Due with a CAN port connection.

SPECIFICATIONS	
Operating Voltage: 12vdc - 5.5-16.0vdc
Operating Temperature: -40 to 85C
Current Consumption: 20-95 ma
Startup time: 400ms max, 350 ms typical
Isolation: 4kv
CAN Communications: 250k, 500k, 1000k. Default 500k 2.0A
Max number of units on CAN bus: 6

CURRENT MEASUREMENT

Nominal Current Range: +/- 1000 amps
Overcurrent Measurement Range: +/- 12,200 amps
Extended load: 1400 amps for 30 seconds; 2000 amps for 10s.
Intiial accuracy: +/-0.1% of reading
Total Accuracy: +/-0.4% of reading
Offset: 125ma
Linearity: 0.01% of range
Noise: 70ma
Resolution: 47ma

HIGH VOLTAGE MEASUREMENT

Nominal Measurement Range: +/-600v
Extended Range: +/-800v
Initial Accuracy: 0.1% reading
Offset: 100 mv
Linearity: +/-0.01% of range
Noise: 60mv
Resolution: 30mv

Temperature corrected.

ISA Current Sensor User Manual Version 1.00 January, 2016

4
copyright 2015 EVTV LLC

CONNECTIONS	

Connections to the IVT Module are depicted below:

1. Control connector is the left most 4-pin connector. Left to right are 12v,
ground, CANLO and CAN HI.

ISA Current Sensor User Manual Version 1.00 January, 2016

5
copyright 2015 EVTV LLC

2. The module is NOT CAN terminated. If you need to terminate, connect
120 ohm resistor between pins 3 and 4 of the center connector.

3. Voltage connectors are two-pin connectors but the pins are shorted
internally. Either may be used.

4. Voltages should be connected in the order depicted with Voltage 1 at the
most positive point of the battery pack. This is important. Power
calculations are based on the voltage at Voltage1 and so should be the total
pack voltage on that input.

5. The shunt is directional. Currents will be read as negative when charging
and positive when discharging as depicted. You may reverse this if desired.

6. The module should be mounted between the pack negative terminal and
ALL loads to ensure all currents into and out of the pack are measured.

 	

ISA Current Sensor User Manual Version 1.00 January, 2016

6
copyright 2015 EVTV LLC

ISA	LIBRARY	
The ISA library was written to allow easy access to the functions available in
the IVT Module. But this library is fairly narrow in application.

It is written for the Arduino Due 84MHz SAM3X multicontroller with CAN
port transceiver hardware installed on the native CAN0 port of the SAM3X
chip and an EEPROM chip for storing variables between sessions. The
EVTV Due Microcontroller has these features.

For other applications, more detailed descriptions of module function and
configuration can be found in the ISAscale IVT Module Data Sheet and by
examining the code in this ISA library.

To use this library, you must first include it in your Arduino program.
You must also include the due_can library http://github.com/collin80.

#include <ISA.h>
#include <due_can.h>

Once included, these libraries allow creation of an object module specifically
for the IVT Module. Instantiate this object in the following manner.

ISA Sensor;

This creates the object Sensor of class ISA. The IVT Module variables and
functions will thereafter be available as Sensor.Voltage1 for example or
Sensor.Amperes or Sensor.AH, etc. Of course, the object name can be any
C++ legal name combination.

The object module Sensor, is of course of “class” ISA. This is part of the
object module hierarchy of the C++ language. However, it is also of class
CANlistener from the due_can library.

class ISA : public CANListener

This takes advantage of a feature of the C++ programming language termed
“inheritance” in that we can create an object of one class, in this case

ISA Current Sensor User Manual Version 1.00 January, 2016

7
copyright 2015 EVTV LLC

CANlistener, and then add some features to it to create a “child” class that
“inherits” all the features of the parent, but then has its own as well.

So ISA is actually an object of class CANlistener that has been enhanced
with new features to make the child class ISA.

This bit of esoterica is interesting because it allows us to an interesting,
thing with the ISA module.

Sensor.begin(0,500);

If we place this line in our setup section, we initialize Sensor to use CAN 0
at a speed of 500 kpbs (500,000 bits per second).

The ISA hardware sends CAN messages in the 0x520 to 0x529 message ID
range. The ISA object module, as a CANlistener submodule, sets an
interrupt to trap all 0x520-0x529 messages and automatically process them
to extract current, voltage and power data.

You can still use CAN 0 in your other program code, but it is already
initialized at 500 kbps. Note too that filter 6 is already in use by the ISA
object and should NOT be redefined in your program.

Bottom line, in this way, you don’t have to decode CAN messages at all to get
the info out of an ISA module.

ISA	KEYWORDS	

When	accessing	ISA	keywords	and	variables,	case	IS	important.	

Amperes	

Certainly the primary function of the IVT Module is to measure current.
This is available continuously at the variable Amperes, a floating point
variable.

ISA Current Sensor User Manual Version 1.00 January, 2016

8
copyright 2015 EVTV LLC

float current=Sensor.Amperes;

Note that the IVT Module is capable of very high accuracy and resolution at
very high current levels. Smaller values can be accessed as
Sensor.milliamps.

Voltage	

This variable holds the voltage last measured between the shunt itself and
the Voltage1 input terminal. This should be the most positive terminal of
your battery pack as this voltage is used for all power calculations in the IVT
Module. As such it represents total pack voltage

float packvoltage=Sensor.Voltage;

VoltageHI	

This variable holds the highest voltage measured since the last reset.

float packvoltageHigh=Sensor.VoltageHI;

VoltageLO	

This variable holds the lowest voltage measured since the last reset. But it
does ignore the first 50 frames after reset.

float packvoltageLowest=Sensor.VoltageLO;

ISA Current Sensor User Manual Version 1.00 January, 2016

9
copyright 2015 EVTV LLC

	

Voltage1	

This variable holds VOLTAGE minus the sum of the voltages measured at
Voltage 2 and Voltage3. As such, this is the voltage of the most positive
SEGMENT of the pack measured.

float V1=Sensor.Voltage1;

Voltage1HI	

This variable holds the highest voltage measured since the last reset.

float V1High=Sensor.Voltage1HI;

Voltage1LO	

This variable holds the lowest voltage measured since the last reset. But it
does ignore the first 50 frames after reset.

float V1Lowest=Sensor.Voltage1LO;

Voltage2	

This variable holds VOLTAGE between the second point of the pack and the
shunt - minus the voltage measured at Voltage 3. As such, this is the
voltage of the middle segment of the pack.

float V2=Sensor.Voltage2;

ISA Current Sensor User Manual Version 1.00 January, 2016

10
copyright 2015 EVTV LLC

	

Voltage2HI	

This variable holds the highest voltage measured since the last reset.

float V2High=Sensor.Voltage2HI;

Voltage2LO	

This variable holds the lowest voltage measured since the last reset. But it
does ignore the first 50 frames after reset.

float V2Lowest=Sensor.Voltage2LO;

Voltage3	
This variable holds the voltage last measured between the shunt itself and
the Voltage3 input terminal. This would be the lowest segment of the pack.

float V3=Sensor.Voltage3

Voltage3HI	

This variable holds the highest voltage measured since the last reset.

float V3High=Sensor.Voltage3HI;

Voltage3LO	

This variable holds the lowest voltage measured since the last reset. But it
does ignore the first 50 frames after reset.

float V3Lowest=Sensor.Voltage3LO;

ISA Current Sensor User Manual Version 1.00 January, 2016

11
copyright 2015 EVTV LLC

Note that many packs contain a number of cells easily divisible by three
while other packs are only divisible by two. In this way, you can have equal
pack segments for almost any sized pack.

And it is important that these voltages each represent an EQUAL number of
cells. In our example diagram, we should three taps each of 32 cells.

This is important and actually one of the key elements of this device. You
can detect individual cell failures quite easily and in fact somewhat before
they occur with just a few pack segment measurements by COMPARING
those values, and specifically comparing them under HIGH LOAD
conditions.

When lithium cells are put under load, their terminal voltages diminish or
“sag” as a function of how much current they are asked to produce.
However, in a series pack of lithium cells, the current through all cells will
be identical and so the resulting voltage from one cell to another, while it
will actually vary, should do so at a very close level. Differences between one
pack segment and another greater than just a volt or two are signs that at
least one cell in the lower measured segment is struggling to produce that
current and will likely fail in the near future.

Specifically which cell is failing is a maintenance function of no particular
import while driving the car. But using these voltage inputs, you can easily
detect variations between groups of cells that warrant investigation.

	Power	

This variable holds the current instantaneous power discharging from the
battery or charging into it (negative). This is Amperes* Voltage and is
expressed in kiloWatts (1000 watts). The voltage at Voltage input 1 is used
for this calculation.

float power=Sensor.KW

ISA Current Sensor User Manual Version 1.00 January, 2016

12
copyright 2015 EVTV LLC

This is also available as Sensor.watt representing smaller values.

KiloWatt-Hours	

Power is expended from the battery pack in a constantly varying manner
and both voltage varies with discharge as well as current. Additionally, as
the State of Charge diminishes, so does the pack voltage. Because of this,
the current necessary to produce the same amount of power will increase.

The most accurate way to measure pack capacity and discharge then is with
the amount of power, expressed in watts, over time, normally expressed in
hours. This kiloWatt-Hour variable then holds the cumulative power
discharged from the pack or charged into the pack over time.

float totalDischarge=Sensor.KWH

Note too that this value accumulates over time and use as long as 12v power
is applied to the IVT Module. It is also periodically written to EEPROM to
be persistent when power is removed from the module. It reloads
automatically when power is again applied. To zero, it must be manually
reset

Sensor.KWH=0;

This value is also available as Sensor.wh representing smaller values.

Ampere-Hours	

An alternate way of measuring power into and out of the battery over time is
to use current only. One Ampere of current flowing from the battery for 60
minutes would then be referred to as one Ampere-Hour of energy.

float ampDischarge=Sensor.AH

pack. Note too that this value accumulates over time and use and is also
periodically written to EEPROM. So similarly you must manually zero it to
reset:

ISA Current Sensor User Manual Version 1.00 January, 2016

13
copyright 2015 EVTV LLC

Sensor.AH=0;

This is also available as Sensor.As representing ampere-seconds.

OTHER	FUNCTIONS	

There are a few housekeeping functions available when using the IVT
Module.

INITIALIZATION	

The IVT Module has a wealth of other features allowing you to measure
things only when a hardware trigger is applied, or to produce a hardwire
output in the event of an overcurrent condition. Different applications
require different measurement functions, etc. Configuration can become
somewhat detailed and is described in the ISAscale IVT Module Data sheet
available at the EVTV web site.

For the ISA library, we have already worked out a configuration to produce
the functions included in the library. Note that this initialization only needs
to be performed once and is persistent from use to use. But if you receive a
new IVT Module, you will likely have to perform this function once to get
proper readout of the variables discussed.

Once an ISA object has been created:

Sensor.initialize();

There may be a delay of a few seconds while this function is performed.
Again, this does NOT need to be run each time you use the device or power
up a program referring to it.

ISA Current Sensor User Manual Version 1.00 January, 2016

14
copyright 2015 EVTV LLC

FRAMECOUNT	

The ISA library keeps a running total of CAN message frames received and
processed in the variable framecount.

int frames=Sensor.framecount;

DEBUG	

Normally, the ISA library does not print anything out the USB port itself.
However, there are two separate debug levels that can be set to observe
internal data processed by the ISA library.

These variables will normally be set to 0. But if set to 1, will cause the ISA
library to print out ASCII data via the USB port showing various details of
operation for troubleshooting purposes.

Sensor.debug=1;

This will cause ISA to display individual CAN frames received or sent via
the CAN port. A timestamp is provided along with the message ID and eight
data bytes of the received or transmitted message.

00:00:34.834 Rcvd ISA frame: 0x523 02 03 08 34 00 00 00 00
00:00:34.834 Rcvd ISA frame: 0x523 02 03 08 34 00 00 00 00
00:00:34.840 Rcvd ISA frame: 0x526 05 01 00 00 00 00 00 00
00:00:34.840 Rcvd ISA frame: 0x526 05 01 00 00 00 00 00 00
00:00:34.870 Rcvd ISA frame: 0x521 00 03 0C 00 00 00 00 00
00:00:34.870 Rcvd ISA frame: 0x521 00 03 0C 00 00 00 00 00
00:00:34.884 Rcvd ISA frame: 0x522 01 0D A4 67 00 00 00 00
00:00:34.884 Rcvd ISA frame: 0x522 01 0D A4 67 00 00 00 00
00:00:34.886 Rcvd ISA frame: 0x527 06 08 AC FB FF FF 00 00

A second debug will cause display of data calculated from those frames.

Sensor.debug2=1;

KiloWattHours: -0.01 Watt Hours: -8 frames:15355
Voltage: 26.54 vdc Voltage 1: 13.23 vdc 26539 mVdc frames:15356
Voltage: 26.54 vdc Voltage 3: -0.04 vdc -43 mVdc frames:15357
Current: 0.01 amperes 7.00 ma frames:15358

ISA Current Sensor User Manual Version 1.00 January, 2016

15
copyright 2015 EVTV LLC

Power: 0 Watts 0.00 kW frames:15359
Temperature: 32.00 C frames:15360
Voltage: 26.53 vdc Voltage 1: 13.22 vdc 26532 mVdc frames:15361
Voltage: 26.53 vdc Voltage 2: 13.35 vdc 13306 mVdc frames:15362
Current: 0.02 amperes 23.00 ma frames:15363
Amphours: -0.31 Ampeseconds: -1104 frames:15364
KiloWattHours: -0.01 Watt Hours: -8 frames:15365

TEMPERATURE	

The IVT Module uses temperature to correct current calculations through
the shunt. This shunt temperature is also available:

int temp=Sensor.Temperature;

STOP	

You can halt operation of the ISA lib at any time with the STOP command:

Sensor.STOP();

START	

Operation may be resumed with the START command:

Sensor.START();

RESTART	

RESTART completely resets and restarts the IVT Module. This has the
effect of resetting AH and KWH to zero.:

Sensor.RESTART();

